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Prospecting for oil and gas resources poses the problem of determining the 
geological structure of the earth's crust from indirect measurements. Seismic 
migration is an acoustic image reconstruction technique based on the inversion 
of the scalar wave equation. Extensive computation is necessary before reliable 
information can be extracted from large sets of recorded data. In this paper a 
collection of "industrial" migration techniques, each giving rise to a data 
parallel algorithm, is outlined. Computer simulations on synthetic seismic data 
illustrate the problem and the approach. 
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1. INTRODUCTION 

The objective of  most  echo techniques is to reconstruct ,  wi thout  destructive 
penetra t ion,  the geological  map  of  the ear th 's  crust. To first order,  the 
crust is a layered medium composed  of unconsol idated  format ions  (sand),  
consol idated  and permeable  format ions  (sandstone) ,  and hard,  t ight forma- 
tions (rock),  each one with specific cont inuum mechanical  proper t ies  
(sound velocity, density, etc.). The geological  methods  of prospect ing for 
oil and gas resources are based on observat ions  of elastic wave fields, 
t reated to a first approx ima t ion  as acoustic waves. .1~ Emit ted pressure 
impulses penetra te  the crust and then are backscat tered to the surface, 
where they are detected by an ar ray  of receivers, usually one-dimensional .  
Each receiver, a se ismograph or  a geophone,  produces  a trace composed  
typical ly of 1500 time intervals of 4 msec each. The time behavior  of a 
single trace depends  in a complex way on the inhomogenei t ies  of the 
ear th 's  crust. Ga the red  traces, in real cases as many  as 2000, represent  a 
local es t imate of the compress ional  wave field. The computa t ion  necessary 
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to extract useful geological information from large sets of data (100 km: 
areal coverage, up to 100,000 tapes for a field experiment) is extensive. 

To reconstruct an acoustic image of the subsurface, the earth is 
modeled as a complicated distorting lens made of small diffracting points, 
each with a specific scattering strength. Variations of a ray path through 
the earth are due to inhomogeneities in the medium. Smooth changes 
associated with compaction cause rays to be slowly turned or refracted. 
Fractures and discontinuities between lithological layers, mostly in the 
vertical direction, cause reflections and diffraction. In the absence of sudden 
changes in the medium, the only signal detected by the receivers is that of 
the source shock traveling along the surface. 

In the migration process, c21 recorded pressure waves are used as initial 
conditions for a wave field governed by the scalar wave equation, which 
propagates downward and in reverse time. Two computation phases are 
necessary to migrate the recorded data: inverse wave field extrapolation 
and imaging. Using the wave equation, initial data must be transformed 
into simulated recordings of the pressure field on each virtual plane below 
the earth's surface. In the imaging phase, scatterer positions, characterized 
by strong reflection coefficients, can be retrieved from the extrapolated 
wave field. 

To reduce the complexity of the initial data inversion, spatial density 
variations are ignored. The compressional velocity field, a piecewise func- 
tion taking values from 0.4 km/sec (sand) up to 7.0 km/sec (granites) which 
generally increases with depth, is assumed known. The entire migration 
process is thus based on the a priori  estimation of the velocity field from 
well logs or velocity analysis. In complicated geological situations, the 
velocity model is not accurately known, and it is only by interpreting 
migrated data that the velocity model is verified. One way to address this 
paradox is to formulate seismic inversion as an optimization problem; the 
solution is that velocity field whose seismic response, governed by the 
wave equation, gives the best fit to surface measurements and thus most 
accurately locates reflecting surfaces, t3"4~ Elegant numerical simulations 
have confirmed the validity of this approach on synthetic and on real 
data, t5"6~ nevertheness its computational cost is today out of reach of most 
real applications. For this reason, in the oil industry a pragmatic approach 
is preferred. 

Here we present the exploding reflector model and the resulting zero- 
offset data migration in homogeneous and inhomogeneus media, embed- 
ding the most common post-stack migration models in the context of 
parallel computing. Three downward extrapolation techniques are outlined 
and illustrated with simulations on synthetic seismic sections. We take 
advantage of intrinsic concurrency to achieve an efficient data paralel 
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implementation for each simulation. The description of the conventional 
method of velocity analysis goes beyond the scope of this article; never- 
theless it constitutes a basic step before our inverse process of retreiving the 
structure of the earth's crust can beginJ 7"8) 

2. THEORETICAL F R A M E W O R K  

In this article the earth's crust is modeled as a two-dimensional half- 
space: the x axis is horizontal and the z axis is vertical, pointing downward. 
The methodology can be extended to three spatial dimensions. 

Pressure waves are assumed to be traveling at point (x, z) with 
velocity c(x, z). In homogeneous media, c(x, z ) =  c o, there is no reflection 
and waves are fully transmitted; in homogeneous media with spatial 
variations in c, waves are partially reflected. Any point (x, z) underneath 
the earth's surface is characterized by a reflection coefficient R, whose 
angular dependence will be ignored. In the special case where c takes only 
two values, Cl and c2, with Cl >> c2, waves traveling at velocity cl are essen- 
tially reflected by the discontinuity. 

Figure l illustrates a simulated seismic experiment: c(x, z ) > 0  is 
constant, except on the three segments denoted by Rt, Rz, and R 3, where 
c = 0  (Fig. la). An impulsive source is initiated; Figs. l b - l e  show the 
evolution of the pressure wave: segments RI, R2, and R 3 act as reflectors. 
Figure If is the corresponding "seismic section," that is, the pressure wave 
recorded by a horizontal array of receivers containing the source. The 
straight lines represent the signal propagating along the receiver array, and 
the hyperbolas represent the signal backscattered by the reflectors. 

Let P(x s, zs, Xo, Zo, t) denote the pressure measured at time t by a 
receiver at position (x o. Zo) after an impulsive source at position (xs, zs) 
has been initiated at t = 0. For a given source, the pressure field measured 
on each (Xo, z0), is a solution of 

02P 02P 1 02P 
ax~ q az 2 C(Xo, Zo) 2a t  2 = 0  (1) 

Figure 1 is obtained solving Eq. (1), using a multistep time integration 
scheme and a spectral approximation for spatial derivatives. 

For a given receiver, as a consequence of the principle of reciprocity {9) 
(transposing source and receiver, the observed wavefield must be 
unchanged), the" pressure field induced by moving the source on each point 
(xs, z~) is also a solution of the scalar wave equation 

02P 02P 1 0zp 
Ox----~ + Oz~ c(x~, z~) z Ot ---T = 0 (2) 
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Fig. 1. Simulated seismic experiment (a) Impulsive source, receivers, and velocity model: 
c = 1 km/sec, except on R I , R 2, and R3, where c = 0 km/sec; (b--e) pressure wave propagation,  
R~, and R 2, alld R 3 act as reflectors; (f) pressure field recorded by the array of receivers; 
straight lines represent the signal propagating along the array, hyperbolas represent the signal 
backscattered by the reflectors; N x  = 256, N z = N, = 128, LIX= A Z  = 50 m, At = 50 msec. 
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Migration c~~ is an inversion process which reconstructs the map R(x, z) of 
local reflectivity from the only available information, the "seismic section" 
P(xs, O, Xo, O, t) and the velocity field c(x, z). The earth is considered fiat 
and the density field is considered constant throughout the medium. 

Introducing appropriate boundary conditions and solving Eqs. (1) and 
(2) for P(x,,  zs, xo, zo, t), 'the raw or "pre-stacked" seismic section can be 
migrated, advancing along the z axis, yielding for each virtual source- 
receiver pair the value of the pressure as a function of the travel time t. 
Notice that moving source and receiver downward along ray paths (Fig. 2), 
reflectors along points of discontinuity in the medium are eventually 
located at (x, z) = (xs, zs) = (Xo, Zo). On these points, R and P are related 
as follows: 

R(x, z) ~ P(x, z, x, z, O) (3) 

As source and receiver approach each other, the travel time between them 
goes to zero. P(x, z, x, z, 0) is called the "migrated section." 

Migration of pre-stacked seismic data has the potential to provide a 
reliable acoustic imaging of the earth. Nevertheless, in the context of a real 
application, the resulting numerical process is a heavy computational task 

Source Receiver 
A 

Diffracting point 

Reflector 

Fig. 2. The earth cross section: during the migration process, source and receiver are 
collapsed backward along the ray path. 
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a consequence, an equivalent trace will result from a source initiated at the 
reflector with the appropriate strength, provided the velocity of the 
medium is divided by two. This is the so-called "exploding reflector" model. 
Hence, using the recorded zero-offset wavefield P(X, 0, t) and solving 
Eq. (9) in reverse time, at time t = 0 we should obtain an acoustic picture 
P(X, Z, 0) of the reflectors. 

The zero-offset data representation thus implies the powerful analogy 
between sources and reflectors. But seismic experiments involve kilo- 
meters of offset between each source and its receivers. In practice, a pre- 
processing technique, called stacking, has been developed to approximate 
zero-offset sections. For a given velocity model, nonzero-offset traces 
P(xs, G, Xo, Zo, Zo, t), sharing the same midpoint X, are first transformed 
by hyperbolic coordinate transformations, the "Normal Move-Out" or the 
"Dip Move-Out" correction, leading to a time-variable shift. 1'2~ Second, 
they are averaged, or "stacked" around the midpoint to get a plausible 
approximation to a zero-offset trace P(X, O, t). It is worthwhile mentioning 
that finding the "best" velocity model is then a matter of optimizing a 
"stack power" function. 1'3~ So, a stacked seismic section does not 
correspond to the observations of a real experiment and the consequent 
migrated section is not an observable wave field. 

For many applications, stacked seismic sections are considered as the 
result of plane-wave experiments. This assumption works well provided 
reflector locations are of more interest than signal amplitudes. The break- 
down of the plane-wave model is the impossibility to incorporate multiple 
reflections which are present in real seismic traces. Nevertheless, even with 
this oversimplification, useful results can be obtained. 

4. D O W N W A R D  W A V E  E X T R A P O L A T I O N  

Let us write in an unusual form the scalar equation (9) for the zero- 
offset pressure field P(X, Z, t): 

32P 1 aZP O2P 
3Z 2 - o(X, Z)  2 3t 2 OX 2 (10) 

Notice that v is the halved wave velocity, X is the horizontal midpoint 
variable, and t is the two-way traveling time. Z, the depth, is the advancing 
variable along which the seismic section P(X, O, t) must be extrapolated 
downward. The target is to evaluate the migrated section P(X, Z, 0). 

To solve Eq. (10), missing boundary conditions must be restored. For 
this purpose, we have imposed periodicity of the solution along the X and 
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t axes. Although this choice may be artificial, it allows us to take advantage 
of Fourier theory and construct the solution step by step along the Z axis. 

4.1. M ig ra t ion  by Phase Shi f t  

Assume that v, the halved wave velocity, is constant. Let P(X, Z, t) be 
represented by a double Fourier series: 

P(X, Z, t) = ~ ~ P(k,., Z, co) exp[i(k,.X + tot)] 
kx ~o 

(11) 

where k.,. and to are respectively the midpoint and the time wave number. 
By substitution of the Fourier series in Eq. (10), one obtains for each coef- 
ficient of Eq. (1 1 ) the following second-order ordinary differential equation: 

d2p(kx, Z, to) ( ~ ) 2 [  (~_~)2] 
dZ 2 - - 1 - P(k~, Z, to) 

This equation has one general solution of the form 

P(k.,., Z, to )=A exp(ik. .Z)+ B e x p ( - i k ~ Z )  

in which 

k = t o [ 1 - ( ~ - ~ ) 2 ]  ' / 2 -  v (12) 

Equation (12) is the well-known dispersion relation (Fig. 6). A and B, the 
constants of integration, are independent of Z. The vertical wave number 
k_ embodies the downward characteristic solution, ( - k . )  the upward one. 
Since we are interested in the inverse extrapolation of the seismic section, 
B must be set to zero and consequently 

P(k,., Z, 09) = P(k.,, O, to) exp(ik:Z) (13) 

where P(k.,., 0, o9) is the transformed seismic section in the (k.,., to) domain. 
Notice that setting B to zero in the general solution, the first deriative of 
the seismic section along the Z axis is implicitly and unequivocally defined. 
Substituting Eq. (13) into (1 1), we get the solution of the inverse problem 
for constant velocity, 

P(X, Z, O)= ~ ~, P(kx, O, x) exp[ i (k:Z + kxX)]  (14) 
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Notice that because we are only interested in propagating waves, kx and co 
must be restricted in the summations to those values leading to real values 
k=, thus avoiding spurious waves: 

Icol 
> v  (15) 

Ikxf 

Equation (14) can be written in a recursive way, relating the solution at 
depth Z to the solution at depth Z + , J Z :  

P(X,Z+ AZ, O) = y' {Z  P(kx, Z, co)exp(ik:zlZ)}exp(ik.,X) (16) 
kx 

The expression in brackets is a summation over co constrained by (15) for 
each increment AZ.  We then must do a single inverse transform to recover 
the migrated section. Equa t ion(16)  is the basis for the "phase shift" 
method; it allows the inverse extrapolation of seismic data in layered media 
where the velocity field, a piecewise constant function of Z, varies from 
layer to layer. 

To illustrate the phase shift method, we consider a synthetic seismic 
section, P(X,  O, t) = ~.i ~ ( X -  Xi) 6 ( t -  t i )  , representing a signal equal to 
zero everywhere, except in a collection of points of the (X, 0, t) plane. 
According to geometric seismics, the resulting migrated section in the 

Fig. 4. Phase shift migration, semicircular mirrors x. (a) Seismic section, (b) resulting 
migrated section; N x = 256, Nz = N, = 128, AX= AZ = 50 m, At = 50 msec, v --- 1 km/sec. 
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(,t, Z, 0) plane must represent points distributed along semicircular mirrors 
of radius vt~ and center (Xi, 0, 0). Iterating Eq. (16), the computed solution 
shown in Fig. 4 is in full agreement with the expected result. 

Figure 5 illustrates the direct and the inverse problem in a very simple 
example. A pointlike impulsive source, playing the role of one exploding 
reflector, is located in the (X, Z, 0) plane (Fig. 5a). Such a reflector can be 
seen as a short-wavelength perturbation of the velocity field (see also 
Fig. 1). The seismic section-P(X, O, t) is simulated by solving the scalar 
wave equation with constant velocity (Fig. 5b). The resulting migrated 
section P(X, Z, 0) shows the accuracy of this approach (Fig. 5c). Remember 
that the artificial condition of periodic must be introduced along both X 
and t-axes. 

Phase shift formulation of frequency domain migration is a good 
example of a problem leading to an elegant data parallel implementation, 

Fig. 5. Phase shift migration. (a) Pointlike reflector, (b) simulated seismic section, (c) result- 
ing migrated section; N x  = 256, N z = N, = 128, ,dX= d Z  = 50 m, zit = 50 msec, v = 1 kin/see. 

822/7611-2-47 
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combining computation and communication among processors. ~14~ To 
construct the migrated section using Eq. (16), a typical run starts with one 
2D FFT, producing an array of complex numbers. For each complex array 
tagged by Z, a parallel operator masks all spurious frequencies and shift 
the phase of each entry. Second, "scan_with_add" operations over to are 
concurrently performed, once for each k x. These two steps are repeated for 
increasing values of Z. The run ends imaging the reflections, namely with 
the concurrent execution of 1D FFTs, one for each value of depth. 

4.2. Migration in Inhomogeneous Media 

We would like to migrate data using an arbitrary velocity model. It is 
clear from the construction of Eq. (16) that the phase shift formula is no 
longer valid for a velocity field v--v(X, Z) with lateral variations. Never- 
theless, assumiflg v periodic along the X axis and decomposing P and v -2 
in Fourier series, the inverse problem may be solved. The difficulty with this 
approach is that it leads to the solution of a dense system of second-order 
ordinary differential equations for the Fourier coefficients P(kx, Z, to), for 
each value Of Z. To avoid this cumbersome task, it is preferable to simplify 
the migration model a step further, keeping its computational complexity 
to a reasonable level. 

The basic strategy adopted is the following. ~5~ We start from the 
description of waves propagating downward through layered media, 
assuming momentarily that the velocity field is a piecewise constant func- 
tion, varying from layer to layer. It is worthwhile noticing that under this 
condition, expression (13) is also a solution of 

dP 
-~  (kx, Z, to)= ik:e(kx, Z, to) (17) 

which is the exact extrapolation equation in a layer [ Z ; Z + A Z ]  with 
velocity v = Vz. Remember that k. takes only real values, we have 

k:=  ~-- (1 -K~-) ~/~, K= vkx (18) 
1) t o  

with k x, to, and v subject to (15). To reformulate the wave propagation in 
a layered medium with lateral variations of the velocity V=Vz(X), the 
migration process governed by Eq. (17) must be somehow moved to the 
(X, to) domain. For this purpose, we first approximate the square root 
~ = ( 1 - K 2 )  t/2 by a truncated rational expansion in K. The simplest 
approximation is the Taylor series. ~ A better alternative is to use faster 
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expansions of ~ requiring fewer terms for the same accuracy317,1s) One 
popular  form is the approximat ion  of the square root  by continued 
fractions, 

K 2 
of ~ = 

~ n + l  = 1 I +)t ,~ f' 1 (19) 

However,  a more  accurate rational expansion is obtained by comput ing the 
square root  with the Newton  algorithm. This gives rise to the following 
recurrence relation: 

1 / 1 - -  K 2 \  
~ " ~ - , = ~ k ~ n " w +  ~ , w  |/, ~ w = l  (20) 

To  verify that  both  expansions converge to Eq. (18), just  let n---, oo in Eqs. 
(19) and (20). I terating both expressions twice, we obtain two approxima-  
tions of  the square root  (Fig. 6): 

K 2 
~ r =  1 1 2 (21) 

2 - - ~ K  

1 2 K 2 1 - ~K 
.w = (22) 

~ 2  1 2 1 -  �89 2 

k z v/o  
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I I I I 
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Fig. 6. Dispersion relations. 
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Substituting one of the two truncated expansions into Eq. (18), we obtain 
an approximation for the dispersion relation, 

k~=~+~( v ) 
v ~-d~ ' k x  (23) 

From Eq. (21) it follows that 

(-d~ c f  _ _  

while from Eq. (22) 

- (v/2o~) k~ 
1 - (v/2o9) 2 k~ (24) 

1 - (~/2o9) 2 k~. -I 

The consequent approximation of the downward extrapolation, Eq. (17), is 
written 

-d-~ ( k.,., Z, og ) = i + f9 ~ k.,. P( k ,., Z, og ) (26) 

Equation (26) can be solved using a fractional step method based on a 
factorization of the Cranck-Nicholson scheme. ~19) The resulting numerical 
method is consistent with the system of equations 

dP~ k ,  iw 
~ -  ( x Z, o9) =--~- Po(k,-, Z, w), Po(k,., Z, o9) = P(k.,., Z, o9) (27) 

dP k - ~  ( .,., Z, w) = i~P(k~, Z, co), P(k,., Z, ~ ) =  Po(k.,., Z + AZ, og) (28) 

which is thus considered as the decomposed or split form of Eq. (26). 
For any single step •Z, the solution of Eq. (27) is used as initial 

condition to Eq. (28). Note that Eq. (27) governs vertically-traveling waves 
with an infinite horizontal wavelength, k.,.=0, while Eq. (28) governs the 
horizontal correction. 

Under the assumption of a homogeneous layer [Z; Z +  zlZ] with a 
constant velocity V=Vz,  solving Eq. (27) is simply a multiplication of 
P(kx, Z, o9) by a phase shift operator. This multiplication can be done in 
the (1t, o9) domain: 

z ,  exp v /29, 
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To express Eq. (28) in the (X, 09) domain, multiply by the denominator of 
and then take the inverse Fourier transform of the equation with respect 

to kx. The equation can then be written as 

[ (21 o"- 1 opo  
1 +\2~oj ax2j az  

[ (v) o; lep.* 

iv O2P cf 

2co OX z (30) 

2~o01"-' 1+ ~ a - ~  

with P(X,Z, og) =P~(X,Z, og), according to the choice of (#. Having 
expressed the problem in the (X, r domain, the control that we had in the 
(k x, o9) domain on spurious waves is lost. However, a practical approach 
to masking them is to introduce an arbitrary cutoff of co around zero. The 
migrated data at Z + AZ are obtained by 

P(X, Z + AZ, O) = ~ P(X, Z + AZ, o9) (32) 

where the summation is carried out for all admissible ~o. The implementa- 
tion of Eq. (32) represents the imaging step of the migration process. 

Equations (30) and (31) are two different approximations of the down- 
ward extrapolation in a layered medium. Although a further simplification 
has been introduced with respect to the initial inverse model, the advantage 
of the (X, co) formulation is that the velocity field dependence is no longer 
restricted to the depth variable alone, but may also include lateral variations 
inside a single layer [Z; Z + AZ]. The straightforward introduction of the 
velocity V=Vz(X) in the extrapolating equations (29)-(31) can be ques- 
tionable. Although it has no clear conceptual basis, it furnishes a migration 
model for inhomogeneous media which is surprisingly reliable on synthetic 
seismic data with reasonable changes of oz(X). 

Equations (30) and (31) are solved numerically. Using the Cranck- 
Nicholson scheme, P and OP/OZ are evaluated at the midpoint of 
[Z; Z + AZ]. Derivatives in X are approximated by central finite differ- 
ences/2~ The inverse problem is thus transformed into a set of linear 
algebraic equations which must be solved for all admissible values of oJ: 

Q ( Z ) = P ( Z ) e x p (  i~ 

d P ( Z  + AZ) = ~r ~r = ~r (33) 
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~r is a nonsingular tri- or pentadiagonal complex matrix and ~r its 
conjugate. Vector P stands for the solution of Eq. (33), the finite-difference 
approximation of P. The spectral radius of the product of matrices 
(~r hate) being equal to one, the advancing scheme (33) has the required 
property of stability to describe correctly the downward wave propagation. 

To illustrate the approach, we consider the following synthetic seismic 
section: P(X, O, t ) = Z i f ( X - X i ) 6 ( t - t ~ )  and v = 1. Equation (30) reflects 
the inaccuracy of the continued fraction approximation of the square root 
for 0.6 ~< K~< 1. This is shown in Fig. 7a: the solution produces a cardioid 
instead of the expected circle as in Fig. 6. This tendency is partially cor- 
rected with Eq. (31), even though a less accurate numerical scheme than 
that used for Eq. (30) was implemented for the example (Fig. 7b). 

We illustrate the exploding reflector model with synthetic data. 
Figure 8a shows a distribution of reflectors acting as sources located in the 
(X, Z, 0) plane. This source configuration is introduced in the scalar wave 
equation subject to the velocity field depicted in Fig. 8b. The seismic sec- 
tion, solution of Eq. (9) in the (X, 0, t) plane, is shown in Fig. 8c. With the 
inverse problem we attempt to reconstruct Fig. 8a solving Eq. (30) and 
imaging the reflectors using Eq. (32). Figure 8d illustrates the quality of the 
migration process. 

The finite-difference formulation of the inverse extrapolation in the 
(X, o9) domain is another good example of a problem leading to an elegant 

Fig. 7. Approximated semicircular mirrors, k: is expanded by (a) continued fraction, 
(b) Newton's algorithm. Compare with Fig. 4. 
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Fig. 8. Migration of synthetic data in inhomogeneus medium. (a) Reflector; (b) inhomo- 
geneous velocity ,field, o varies from 1 to 4 km/sec; (c) simulated seismic section; (d) finite 
difference, Eq. (30): migrated section; (e) phase shift plus interpolation: migrated section; 
N x =  256, Nz=N,= 128, A X = , J Z =  50 m, Llt= 50 msec. 
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data-parallel implementation. A typical run starts with the concurrent 
execution of 1D FFTs, one for each X, producing an array of complex 
numbers. For each horizontal layer, a parallel operator masks all spurious 
frequencies and shifts the phase of each entry of the complex array, pre- 
paring data for the solution of Eq. (30). The resulting linear systems, 
parametrized by 09, are concurrently solved. Finally, the imaging of reflec- 
tors is performed, running concurrent "scan_with_add" operations-over 09 
for each value of X, according to Eq. (32). 

4.3. Migration by Phase Shift plus Interpolation 

The purpose now is to construct a pure spectral method for the extra- 
polation of seismic data in.an inhomogeneous medium. The point is to 
keep the computation in the (k x, 09) domain, avoid the less accurate finite- 
difference so.lution of partial differential equations in the (X, 09) domain. 

We start from Eq. (26), decomposed into Eqs. (27) and (28), under the 
assumption of a homogeneous layer [Z; Z + zlZ] with a constant velocity 
v = Vz. The solution of Eq. (27) in the (2, 09) domain takes the form 

Po(X, Z, 09) = P(X, Z, 09) exp (i ~ dZ) (34) 

Since fr = k : -  09/v, the solution of Eq. (28) in the (k.,., 09) domain becomes 

The extrapolators (34) and (35) represent the split form of the phase shift 
operator. 

Equation (34) is formulated in the (2, 09) domain and can be formally 
computed with v = Vz(X). In contrast, Eq. (35) is not formally valid when 
the velocity varies laterally; however, supposing the equation piecewise- 
valid, it is evaluated at different velocities to construct the solution in the 
(X, 09) domain. 12~ 

To explain, let us consider a sampling of v=  vz(X), including the 
smallest and the largest velocity values: Vmin = VO < Vl < V2 < "'" < VM+ 
= VMax. Introducing each one of them into Eq. (35), we can extrapolate the 
pressure field Po(kx, Z, 09), velocity after velocity, and represent each result 
in the (X, o9) domain: 

F { ,_~,,~ 09) ] 
e,"'(x, z + z z ,  09) = Z Po(k,, z ,  09) exp L i - E z z  + kx 

kx 
(36) 
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with n = 0, 1, 2 ..... M + 1. To avoid the propagation of spurious waves, kx, 
co, and v, are subject to condition (15). 

The transformed fields Pv')(X, Z + AZ,  w)  serve as reference data from 
which the final result will be obtained by interpolation: 

M+I 
P(X,  Z + AZ,  o))= 

n = O  

P(')(X, Z +  AZ,  co)r  (37) 

~b" is the shape function whose support is defined by the reference velocities 
v,_ ~ and v,+~ bounding vz (X) .  For instance, in the case of linear inter- 
polation, 

v:(X) - v,, _ ! 

On - -  V n -  1 

r  = ,~ v__. + , - -  v~(_x) 

( 0  t~.+l V. 

where v. _, < v:(X) ~< v,, 

where v. <~ v :( X)  <. v. + 1 

otherwise 

(38) 

Substituting Eq. (38) into (37), the interpolated solution becomes 

P(X,  Z + AZ,  o9)= PI"I(X, Z + AZ,  o)) v,, + t - -v2(X)  
Vn  + 1 - -  On 

0..(2") - v,, 
+ P("+ t)(X, Z + A Z .  w) 

On + 1 - -  Vn  

for all X such that v. <~ v :( X)  <~ v,, + 1. 
Finally, the imaging of the reflectors at Z +  AZ is obtained by 

(39) 

P(X,  Z + AZ,  O) = ~ P(X,  Z + AZ,  09) (40) 
to 

The phase shift plus interpolation is a practical alternative to the finite- 
difference migration in the (X, o9) domain with the obvious advantage that 
each reference velocity gives rise to an analytic solution, Eq. (36). This is 
the essence of the phase shift plus interpolation. All reference solutions can 
be concurrently computed using the phase shift algorithm. Equation (39) 
can be evaluated using the data paralell "where" construct/14) 

Here again, the introduction of laterally-variable velocities and the use 
of interpolating reference solutions do not have a well-established mathe- 
matical basis. Computer experiments show that this approach is in fact 
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more reliable than finite differences in the (X, co) domain, t2~ Neither model 
will perform well when velocity contrast in X is too strong. However, the 
obvious advantage of finite differences is that the resulting algorithm is 
faster because the use of 2D or 3D FFTs is not necessary. 

Reference velocities are chosen, for instance, to form a geometric 
progression (Vn + l/V,,)= R, n = 0, 1, 2 ..... M; the number M is the smallest 
integer for which we have (VMax/Vmi,)>1 R M+ 1. 

We illustrate the phase shift plus interpolation with the synthetic 
seismic section and the velocity field of Figs. 8c and 8d. In this example, the 
number of reference velocities is 5 and R = 1.5. The comparison between 
Figs. 8e and 8a shows the quality of the inversion process in this case. 

5. C O N C L U S I O N  

This article is concerned with 2D migration after common midpoint 
stacking. We have described the migration of zero-offset seismic data using 
the scalar wave equation. First, assuming periodicity in X and t of the 
pressure field, we present a downward extrapolation equation in the 
(kx, co) domain, exact for layered media. Then we consider media with 
inhomogeneities in X as well as Z and reformulate the model to describe 
migration in the (X, co) domain. Alternatively, we show how the original 
downward extrapolation equation in (kx, co) can be used with various 
reference velocities to give an interpolation in (X, co) of the pressure field 
for inhomogeneous media. 

Data parallelism (on a CM-200 with 8k one-bit processors under the 
slicewise execution model) has allowed us to take advantage of the natural 
concurrency in seismic migration models. This is important for field 
applications in oil and gas exploration, in which extensive computation on 
huge data sets is necessary for the 3D reconstruction of acoustic subsurface 
images. With the increase in computing power, pre-stack inversion is 
becoming feasible. 

We note that the most computationally demanding problems in 
natural science, including tomography, image processing, satellite imaging, 
etc., can benefit from reformulations that enhance intrinsic concurrence. 
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